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Phase Transitions in Lattice Gas Models for Water 
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Water-like lattice gases on the triangular and body-centered cubic lattices 
are investigated. Molecules may reside on the lattice sites in either of two 
possible orientations, a hydrogen bond being formed between molecules 
on neighboring sites if they have the proper orientation with respect to one 
another. For a range of chemical potential at sufficiently low temperatures, 
the models are shown to have an ordered phase consisting of an open, 
hydrogen-bonded, icelike structure. The models are shown to be transition- 
free at sufficiently high temperature, indicating the existence of a critical 
point. 
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1. I N T R O D U C T I O N  

A statistical mechanical  theory which in a satisfactory way describes the 

properties of l iquid water seems still to be a dis tant  goal. One way to gain 

insight is to study simplified models o f " w a t e r - l i k e "  molecules. In  the present  

article we consider a very simple lattice model  which might  be classified as 

water-like; actually, we consider  two models,  one version on the (v = 2)- 
d imensional  t r iangular  lattice and  another  version on the (v -- 3)-dimensional  
body-centered cubic (bcc) lattice. 

The two-dimensional  model  is the same as a lattice gas model  studied by 

Bell and  Lavis31'2~ A con t i nuum version of the model  has been considered 

by Ben-Naim5 a~ The main  idea in the model  is to disregard the asymmetry  

(but  no t  the direction) of the hydrogen bond ;  i.e., one does no t  dist inguish 
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between the hydrogen atom and the lone pair of electrons. In the lattice gas 
version, besides limiting the positions of the molecules to the lattice sites, the 
rotation of the molecules is restricted so as to allow only two different 
orientations. 

The three-dimensional version of  the two-orientation model is 
similar to a lattice gas model considered by Bell and Salt (4~ and by 
Fleming and Gibbs, (5,6~ the essential difference being that in their model 
the distinction between lone pairs and hydrogen atoms is retained. 
As such, a water molecule is allowed 12 possible orientations in their 
model. 

The object of the present article is to establish that the models con- 
sidered simulate water in the sense that they undergo a phase transition to an 
ordered phase which is characterized by an open structure (density approxi- 
mately 2/3 in the two-dimensional version and 1/2 in the three-dimensional 
version) similar to the structure of ice. 

To be more precise, the two orientations allowed in the models may be 
pictured as orientations of trigonal-planar molecules on the triangular lattice 
and as orientations of tetrahedra! molecules on the bcc lattice, where the 
center of a molecule occupies a lattice site and the bonds point toward 
neighboring lattice sites. This pictorial representation has the following 
meaning: if two molecules occupy neighboring sites such that the bonds of 
the pictorial representations overlap, a hydrogen bond with energy E < 0 is 
said to form. 

As such, three translationally related hydrogen-bonded structures P1, 
P2, and Pa can exist on the triangular lattice, each occupying an open honey- 
comb structure. Similarly, four translationally related hydrogen-bonded 
structures PI, P2, Pa, and P~ can exist on the bcc lattice, each occupying an 
open diamond structure. The triangular lattice can be filled with only one of 
the ordered structures, but two interlocking diamond structures can simul- 
taneously fill the bcc lattice. 

Since we wish to show that under certain conditions an open, icelike 
crystalline state can exist at equilibrium on the bcc lattice, a repulsion 7 >/0 
will be added between two molecules on neighboring sites if neither molecule 
points a bond toward the other. This repulsion will disfavor the configuration 
composed of two interlocking diamond structures compared to the case where 
only one diamond lattice is filled. A repulsion 7' >/ 0 will also be added 
between a pair of molecules on first-neighbor sites if only one of them points 
a bond toward the other. This repulsion 7' is added in order to avoid neces- 
sarily favoring occupancy of noninterlocking structures over the occupancy 
of interlocking structures. In fact, if 27' is less than 7 + e, we shall find that 
at closest packing an ordered structure can exist in which all of the molecules 
are in a single orientation. This is the same high-density ordered structure 
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which exists for a model in which the hydrogen-bonded attraction is replaced 
by a hard-core repulsion. (7) 

For  each of the two lattices we shall use the Peierls argument <8-1x~ in 
order to prove that at equilibrium an ordered phase exists at sufficiently low 
temperature. In the bcc lattice, we shall find it convenient to consider separ- 
ately each of the two types of  ordered, hydrogen-bonded structures mentioned 
above. The presence or absence of phase transitions for the models at the 
close-packed limit will then be determined by first showing the models at 
closest packing to be equivalent to Ising models. The Ruelle theorem(12,13) 
will then be used to prove the existence of critical points for the models and 
to show that the models have no transitions at sufficiently low chemical 
potential/~. 

2. O R D E R - D I S O R D E R  T R A N S I T I O N S :  PE IERLS '  A R G U M E N T  

In this section we shall apply Peierls' argument (8-11) in order to prove the 
existence of an ordered phase in the two models considered. Since the notion 
of a contour plays a central role in the Peierls argument, we shall first define 
what we shall mean by a contour in a configuration. 

The triangular lattice is composed of three triangular sublattices. The 
lattice is also composed of triangles having edges of  first-neighbor length and 
a vertex from each of the three sublattices. The bcc lattice is composed of two 
simple cubic sublattices, each of which is composed of two face-centered 
cubic (fcc) sublattices. The lattice is also composed of tetrahedra having one 
vertex from each of the fcc sublattices. Two of the edges of each tetrahedron 
are of  second-neighbor length and connect two vertices from the same simple 
cubic sublattice. Each of the other four edges connects a vertex from each of 
the two simple cubic sublattices and is of first-neighbor length. 

In Fig. 1 are listed the seven principally different types of molecular 
configuration which can occur about a given triangle in the triangular lattice. 
Only triangles of type i0 = 1 are bordered by a configuration which belongs 
to only one ordered hydrogen-bonded structure. 

/ AA 
2 3 /~ 

A/k/  
5 6 7 

Fig. 1. The seven principally different types of molecular configuration which can occur 
about a given triangle in a configuration on the triangular lattice. 
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1 2 3 4 5 

6 7 8 9 10 

(7 i 
11 12 13 14 15 

Fig. 2. The 15 principally different types of molecular configuration which can border 
a given tetrahedron in a configuration on the bcc lattice. The tetrahedra are represented 
as squares, an edge representing a first-neighbor distance, and a diagonal representing a 
second-neighbor distance. 

In  Fig. 2 are listed the 15 principally different types of  molecular con- 
figuration which can occur about  a te t rahedron in the bcc lattice. These 
tetrahedra are represented as squares, the diagonals corresponding to the 
tetrahedral  edges o f  second-neighbor length. For  the bcc lattice we shall show 
that  two different types of  hydrogen-bonded phase can exist, type 1, which 
consists o f  an open hydrogen-bonded  d iamond structure, and type 2, which 
consists o f  two interlocking hydrogen-bonded d iamond structures. In  
addition, we shall show in Section 3 that  there exists at closest packing a 
third type o f  ordered structure, type 3, having no hydrogen bonding,  in 
which all o f  the molecules are in a single orientation. 

Each  of  these three types o f  ordered structure is composed entirely of  
te trahedra o f  a single type. In fact, we have numbered in Fig. 2 the different 
types o f  configurations about  a te t rahedron so that  an ordered structure of  
type io consists only of  te trahedra o f  type i0, where i0 = 1, 2, or 3. 

These triangles and tetrahedra are examples o f  v-dimensional simplices. 
We shall consider simplices of  type i r i0 to be contour  segments. A (v - 1)- 
dimensional surface element o f  a simplex (an edge for v = 2 and a triangle for 
v = 3) will be called a face of  a simplex. A face will be said to be ordered if 
the molecular configuration at the v vertices of  the face could be the same as 
the configurat ion of  v vertices of  a face of  a simplex of  type i0. Otherwise, the 
face is said to be disordered. An  inspection of  Figs. 1 and 2 indicates that  a 
contour  segment can contain at most  one ordered face. Two contour  seg- 
ments will be said to be connected if they share a disordered face. A simply 
connected set of  contour  segments shall constitute a contour.  A contour  shall 
be said to be closed if its border  contains only ordered faces. 
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I f  N~ is the number of  sites which have an ordered structure P~ in a 
configuration on a lattice A having [A] sites, then as discussr by Dobru-  
shin, <1~ there is an order-disorder transition in the thermodynamic limit if 
(N=)/IA[ > lip, where p is the number of  ordered structures which can be 
superimposed by the operation of an element of the space group of the lattice, 
and where the thermal average is taken only over configurations in which the 
outer boundary is composed of the ordered structure P~. 

In the triangular lattice, P~ will be one of the p = 3 ordered hydrogen- 
bonded honeycomb structures. In this case, each vacant site can be said to 
belong to a specified one of the three ordered structures. For  ordered structures 
of  type 1 on the bcc lattice, P~ will be one of the p = 4 hydrogen-bonded 
diamond structures. In this case a vacancy that borders a simplex of type 
io = 1 can be said to belong to a specified ordered structure, whereas a 
vacant site bordered by only contour segments can be said to belong to both 
of two different ordered structures. For  ordered structures of  type 2 on the 
bcc lattice, P~ will be one o f t h e p  = 2 sets of  interlocking diamond structures. 
In this case a vacant site belongs to neither of the p = 2 ordered structures. 

In the cases considered, if the boundary is occupied by structure P~, 
then all sites not belonging to P~ are enclosed by a closed contour which is 
also an outer contour. Then for any such configuration, 

m(L) 

}A] - N~ <~ ~ N(L) ~ X(~ ) (1) 
L = L  0 ] = 1  

where N(L) is the maximum number of sites which can be enclosed by a 
contour of  L segments, m(L) is the maximum number of types of  closed 
contours of  L segments, and 

X~J' = (10 otherwise if contour j is present in the configuration 

A closed contour can consist of  no fewer than Lo segments, where Lo = 6 for 
the triangular lattice and Lo = 24 for the bcc lattice. 

We shall now obtain an upper bound to N(L). Since at most one face 
of  a contour segment can border a closed contour, then a closed contour of L 
segments can have no more sites interior to the contour than can a v- 
dimensional sphere with volume V and surface SL, where S is the (v - 1)- 
dimensional surface area of  a face of  a contour segment which has a volume 
Vo. Since a site interior to a contour is a vertex of Lo simplices enclosed by 
the contour, each simplex having v + 1 vertices, then N(L) <~ (V/Vo)(V + 1)/Lo. 
A simple computation then gives 

I 3  - z/2(27r) - 1L2 triangular lattice 
N(L) <~ (12_z(2~r2)_ll~L3/2 bcc lattice (2) 
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Hence, for either lattice, 

N(L) < (1/6)L ~I(~-1) (3) 

We next obtain an upper bound to m(L). Since there are three possible 
configurations at each site, there are then at most 3 ~+1 possible choices for 
the first simplex of the contour. We shall number successively the disordered 
faces of the growing contour, adding the next simplex of the contour to the 
disordered face with the lowest number. Since each added simplex introduces 
at most one new vertex to the contour, then there are less than 3 L+ ~ contours 
of L simplices which include a given simplex. Since each vertex in a closed 
contour must be shared by at least s simplices, where s = 2 for the triangular 
lattice and s = 4 for the bcc lattice, then no new vertices will be introduced by 
the last s - 1 simplices added to form a closed contour. Since each lattice 
considered is composed of at most ZolAI/(v + 1) simplices, then there are less 
than 3 L + ~-s+ 1LoIA]/[L(v + 1)] closed contours composed of L simplices, the 
division by L resulting since the choice of the first segment is arbitrary. Since 
3~-SLo/(V + 1) = 2, then for either lattice, 

m(Z) < 6-3LIAI/L (4) 

Combining Eqs. (1), (3), and (4), it follows that 

1 - (N.)/IA] < ~ 3~Zl/"-l)(X<{))max (5) 
L = L  o 

We now proceed to obtain an upper bound to (X~j)). We associate with 
each of the seven types of triangle listed in Fig. 1 a corresponding quantity 
oJ~ equal to the sum of/~/3 - E/2 for each hydrogen bond bordering the tri- 
angle and t~/6 for each " incomple te"  hydrogen bond bordering the triangle. 
We associate with each of the 15 types of  tetrahedron in Fig. 2 a corresponding 
quantity o~ equal to the sum of t~/12 - ~/6 for each hydrogen bond bordering 
the tetrahedron,/~/24 for each " incomple te"  hydrogen bond, - 7 / 6  for each 
pair of occupied first-neighbor sites in the tetrahedron neither of  which 
points a bond toward the other, and - 7 ' / 6  for each pair of occupied first- 
neighbor sites in the tetrahedron, one of which points a bond toward the 
other. The ~o~ for the triangular lattice are listed in Table I, and the ~o~ for the 
bcc lattice are listed in Table II. Then in any configuration C containing .N 
molecules, 

( / ~ N -  e ) c  = ~,  n,(C)o~, (6) 

where the sum extends over the seven types of triangle or the 15 types of 
tetrahedron. Here n~(C) is the number of simplices of type i in the con- 
figuration C. 
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Table I. Quantit ies o~t Associated w i th  the Cor- 
responding Configurations Illustrated in Fig. 1 for 

the Triangular Lattice 

i 1 2 3 4 5 6 7 

i 

Let A be the set of all configurations which contain a contour ~ ,  which 
is an outer contour of length L. With each configuration C ~ A we associate a 
configuration C*E A* (this association is a I-1 correspondence) generated 
in the following manner. Let Tr be a unit translation which converts structure 
PT to structure P~. Translate by T~ all PT, r # ~, regions (together with their 
interiors) that border 5s Then replace all contour segments of s with 
simplices of type i0 having structure P~. The result is to form a configuration 
C* such that 

( tzN - E ) c  - (IzN - E)c*  = ~ ,  n,(oW)(oJ, - o%) <~ - L , ~ ,  (7) 
i ~ i  o 

where n,(5 ~ is the number of contour segments of type i in the contour 5r 
and 

% = min(~% - ~oi) = 0% - max co, (8) 

Hence, 

(Xz r = ~ exp/3(tzN - E ) c / ~  exp/3(t.*N - E ) c  
C ~ A  / o  

r 

- E ) c /  ~ exp/3(t~N - E ) c .  <~ exp(-/3%L) (9) ~< exp /30,N 
C E A  ] C * 6 h *  

where/3 = 1/ (kT) .  

Table II. Quantit ies co= Associated w i th  the Cor- 
responding Configurations Illustrated in Fig. 2 for  

the BCC Lattice 

i oJ~ i tot 

1 / , [ 1 2  - -  E/6 9 t~[8 - -  y ' ] 3  

2 /*/6 - -  e /3  - -  y ] 3  1 0  t z /12  - -  ~,/6 

3 /*/6 - -  2 z / / 3  11 /* /12  - -  ~, ' /6  

4 /*[6 - -  ~16 - -  y / 6  - -  ~/13 1 2  t~[12 

5 /*[6 - -  ~16 - -  y ] 6  - -  y ' 1 3  13  /~112 

6 /*[8 - -  --/6 - -  y ' [ 6  1 4  / z /24  

7 /*/8 - ~/6  - -  y / 6  15 0 

8 /*/8 - ~,/6 - ~, ' /6  
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Combin ing  Eqs. (5) and  (9), we then obtain  

1 - (<N,~>/IAI) < ~ LZ/(v-1)(3e-a%) r" (10) 
L = L  0 

which converges if  3 exp(- /3%)  < 1. Let  tp be the solution of  the equat ion 

~ Llt(v-1)(3e-1/tOL = (p - 1)/p (11) 
L = L  0 

I f  e, > 0, then (N , ) / IA  I > lip if  k T  <<. 6~,,  proving  the existence of  an 
ordered phase for  this t empera ture  range. 

Fo r  the t r iangular  lattice the values of  E, can be obtained f rom Eq. (8) 
and the quantit ies in Table  I. There  is an ordered phase  i f% > 0, which occurs 
if  3~/2 < tz < 0. This phase  exists in the region 

k T  /1/2 - ~/3,  if  3,/2 < ff . < ,  (12) 
I,It~ < [ f f / 6 ,  i f  e < ff < 0 

This region of  the (/,, T)  plane is i l lustrated in Fig. 3. 
Fo r  the bcc lattice, the values of  e u can be obta ined f rom Eq. (8) and  the 

quanti t ies  in Table  II .  I f  7 > 0, there is an ordered phase  of  type 1 for  the 
range 2e < / z  < min{(2e + 47), 47'}. In addition, if  

ff > max{(2,  + 47), (4e + 87 - 47')}, 

there is an ordered phase of  type 2 i f 2 y '  > 9' + e. In  part icular :  

I f  7 = 0, there exists type 2 i f /z  > 2e. 
I f 0  < 7 < 7' - e/2, there exists type 1 i f2e  < ff < 2~ + 47 and type 2 

i f /z  > 2 e + 4 7 .  
I f  7' - e/2 ~< y < 27' - e, there exists type 1 if 2e < / z  < 47' and type 

2 i f f f  > 4 e +  8 7 - 4 7 ' .  
I f  7 / >  27' - E, there exists type 1 if 2e < /z < 47'. 

Fo r  the case 7'  = 0, the regions of  the (if, T)  plane for  which ordered 

1/6 

3e/2 ~: I,z 

Fig. 3. Region of the (tz, T) plane given by Eq. (12) in which an ordered phase exists on 
the triangular lattice. The temperature coordinate is in units of I c l t 3 ] k .  
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"y=O 

T 

2e 0 

Type 2 

P 

T 

y= -El4 / I .  Fype 2 

2~ e 0 -e 

T 

y=-E/2 e ~  2 . . . . . . .  i 

Typ Type 2 

2E 4z 0 -2E -E 

T 
A 

y = -3E/4 
T 

Type 1 ~ - 1 ~  ~ . . . . . . .  72q, - 

2e 4._.g.E 0 -2c -3e p. 
3 

T 

y=-E Type1 - ~  ~-2 4/3 
P 

2c L~ 0 
3 

Fig. 4. Regions of the (~, T) plane in which ordered phases of type 1 or  type 2 are shown 
to exist on the bcc lattice for the case when ~ / = 0  and ~, is varied from zero to infinity. 
The temperature coordinate is in units of 24[EItp/k, where p --- 4 for the type l 
structure and p = 2 for the type 2 structure. 

phases are proved to exist are illustrated in Fig. 4 for five different values of  
7. At 7 = 0, only type 2 is shown to exist. As 7 is increased, type 1 is shown 
to be present at larger and larger (but negative) values o f / z .  Increasing 7 
tends to destabilize the type 2 structure. In fact, as 7 is increased, type 2 is 
shown to be present at only larger and larger values of  F. For 7 > - E, type 
2 is not shown to be present at all. 

If 7 is kept constant and 7' is increased, type 1 can be shown to exist for 
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larger and larger values of ~, and type 2 can be proved to exist at smaller and 
smaller values of/L. This results since increasing 7' destabilizes noninter- 
locking diamond structures. 

3. EQUIVALENCE AT CLOSEST PACKING TO ISING MODELS 

We shall now show that the models at closest packing are equivalent to 
Ising models. This equivalence has been given previously for the two- 
dimensional lattice model by Bell and Lavis. ~1) 

As mentioned in Section 2, the triangular lattice can be decomposed 
into three triangular sublattices A, B, and C such that each triangular simplex 
with edges of first-neighbor length and vertices at lattice sites has a vertex 
from each of the three sublattices. We shall denote the two orientations of a 
molecule as + and - ,  such that an (A, B, C) = ( + ,  + ,  + )  configuration 
corresponds to configuration i = 3 in Fig. 1. 

Letting S~ = + 1 if site i is occupied by a molecule in the (+)-orientation, 
and S~ = - 1 if site i is occupied by a molecule in the (-) -or ientat ion,  then 
at closest packing, the energy of a configuration can be written as 

E = ~ �88 + S,)(1 - Sj) (13) 
(i,i) 

where the sum extends over all first-neighbor pairs taken in the following 
standard ordering according to sublattices: (i,j) = (A, B), (B, C), or (C, A). 
Since each site appears in the sum equally often as i and as j, then 

(S, - Sj) = 0 (14) 
(LD 

and the model is equivalent at closest packing to an antiferromagnetic Ising 
model on the triangular lattice with d = - c/4 > 0 and zero magnetic field, ~1~ 
which has no phase transition as a function of temperature. ~14~ 

Similarly, the bcc lattice can be decomposed into four fcc sublattices 
A, B, C, and D such that each irregular tetrahedral simplex with four edges 
of first-neighbor length and two edges of second-neighbor length and vertices 
at lattice sites has a vertex from each of the four sublattices. The two edges 

of second-neighbor length, say AB and CD, are represented in Fig. 2 as the 
diagonals of a square. We shall denote the two orientations of a molecule as 
+ and - ,  such that an (A, B, C, D) = ( + ,  + ,  + ,  + )  orientation corre- 
sponds to configuration i = 3 in Fig. 2. If  S~ is defined as above, then the 
energy of a close-packed configuration can be written as 

E =  ~{�88 + S,)(1 - Sy) + �88 + Sj)(1 - S,) + �89 + S~Sj)} (15) 

where the sum extends over all first-neighbor pairs taken in the following 
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s tandard  ordering according to sublattices; (i, j )  = (C, A), (A, D), (B, C), or  
(D, B). Since Eq. (14) holds for  this case as well, then the model  is equivalent 
to an Ising model  on the bcc lattice with J = - e / 4  - 7'/4 + 7"/2 and zero 
magnet ic  field. 

I f  27,' > 7' + e, then J > 0 and the model  is equivalent  to an anti- 
fe r romagnet ic  Ising model  which has a t rans i t ion( l~  to a low tempera ture  
phase  which corresponds  to the ordered type 2 structure. I f  27' < 7, + e, then 
the model  is equivalent  to a fer romagnet ic  Ising model  which has a transi- 
t i o n ( ~  to a phase  corresponding to the type 3 structure. I f  27" = 7, + e, 
there is no transi t ion at  closest packing.  

4. REGIONS OF THE ( F , T )  PLANE W H I C H  ARE FREE OF 
T R A N S I T I O N S  

Consider  the lattice As fo rmed  by " sp l i t t i ng"  each lattice site of  a two- 
or ientat ion lattice gas into two separate  sites, the occupancy of  each of  the 
two sites so fo rmed  being equivalent  to occupancy of  a site on the original 
lattice by a molecule in a certain one o f  the two possible orientations.  (7~ The 
two-or ienta t ion lattice gas is then equivalent  to a one-orientat ion lattice gas 
on As. The Ruelle Theorem(12'la~ can then be applied to the lattice gas on 
As in order  to locate regions of  the (t~, T) plane in which the original two- 
or ientat ion lattice gas is free of  transit ions.  

Fo r  the two models  considered here, a molecule on the equivalent split 
lattice A s interacts via a hard-core  repulsion with a molecule on one other  site 
o f  As. In addit ion,  it interacts via a hydrogen  bond  with a molecule on any 
one of  n~ sites, where n~ = 3 for  the t r iangular  lattice and n~ = 4 for  the bcc 
lattice. A molecule on the bcc lattice also interacts via repulsions 7' and 7' 
with molecules on n~ = 4 and n~, = 8 sites, respectively. 

Lett ing z = exp(fl/x), z = (zt ..... ZlAsl), and letting A ~ denote the com-  
p lement  of  the set A, then the Ruelle Theorem (z2,~3~ ensures that  the grand 
part i t ion funct ion E(z) r 0 in D = {Dx}~A~, where 

D~ = - [ ( -  R ) ( -  A t ) " , ( -  A , ) " , ( -  Ar.)",] "~ (16) 

Here  R = {z: Re(z) <~ -1 /2} ,  

{ : ;  [ z +  1 ] ~ < ( l -  C~) 1'2 u < 0  
A .  = lz + Cu] <~ [Cu(Cu - 1)1 lt2 u > 0 

and C~ = exp(flu). 
I t  is easy to see that  D~ contains the nonnegat ive real axis if 

n~sin-l(1 - eBr z/2 + n~sin-l(1 - e - e 0  zjz + n~,sin-l(1 - e - ~ ' )  1/~ < ~r/2 (17) 

This inequality is certainly satisfied at sufficiently small fl, proving the models  



382 Ole J. Heilmann and Dale A. Huckaby 

are analytic (transition free) at sufficiently high temperatures. An upper bound 
on the critical temperature Tc is given by Eq. (17) as 

k T c  < - a  2 In cos 2(n~ + n~ + n,.) (18) 

where a = max([~l, 7', 7"). 
Using Grace's Theorem, (16~ one can show that At in Eq. (16) could also 

be replaced by A _-- {z: [z[ >1 C~/2}. Then Dx,-, contains no element with 
modulus less than 

� 8 9  - [ C , ( C ,  - 1)]1'2}"~{C,.- [ C y , ( C ;  - 1)11/2}", �9 

If  C > 1, then C - [ C ( C  - 1)] 1t2 > 1/2 - 1/(8C) > 3/8. Hence there is 
no transition if 

i ~ < e n J 2  - kT[ln 2 + (n~ + ny,)ln(813)1 (19) 

5. D I S C U S S I O N  

At sufficiently low temperature, the simple two-orientation lattice gas 
models considered here have been shown to have an ordered phase consisting 
of an open hydrogen-bonded, "icelike" structure. For the bcc lattice the 
introduction of a repulsion 7' was necessary in order to obtain the existence of 
such a phase. The resulting ordered phase, type 1, consisting of an open 
hydrogen-bonded diamond structure, is similar to the ice phase known as ice 
Ic. (4~ For the bcc lattice a dense ordered phase, type 2, consisting of two inter- 
locking hydrogen-bonded diamond structures, was also shown to exist. This 
phase is essentially the same as the ice phase known as ice VIII. m 

At closest packing (/~ --> oo) the models were shown to be equivalent to 
Ising models with zero magnetic field. For  the bcc lattice a dense phase of 
either type 2 or type 3 was shown to exist at closest packing, depending on 
whether the equivalent Ising model was antiferromagnetic or ferromagnetic, 
respectively. The type 3 phase has no hydrogen bonding and consists of 
molecules all in a single orientation. 

For  the triangular lattice the model is equivalent in the close-packed 
limit to an antiferromagnetic Ising model and therefore has no ordered 
phase. (1~ If  repulsions similar to those introduced in the bcc lattice had been 
introduced in the triangular lattice, the model would be equivalent at closest 
packing to an Ising model with J = -E/4  - 7'/4 + ~,'/2. If 27,' < e + 7', the 
Ising model is ferromagnetic and has an ordered phase at low temperatures 
corresponding to a structure with no hydrogen bonding in which all of the 
molecules are in a single orientation. The structure would be composed 
entirely of triangles of type i = 3 as illustrated in Fig. 1. This structure is 
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identical to the high-density phase which exists for a model  in which the 
hydrogen-bonded  at traction is replaced by a hard-core repulsion. (v~ 

In  addition, the two models have been shown to be transit ion free at 
sufficiently low chemical potential. Moreover ,  the models were shown to be 
analytic at sufficiently high temperature,  indicating the existence o f  a critical 
point. 
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